Skip to content

共有メモリ

メモリ空間指定子で詳しく述べるが、共有メモリは__shared__メモリ空間指定子を使って確保される。

共有メモリはグローバルメモリよりかなり早いとされ、CUDAブロックによるグローバルメモリへのアクセスを最小化するためのスクラッチパッドメモリとして使える。

以下のコード例は共有メモリを活用しない行列積の実装である。各スレッドはAのある行とBのある列を読んで、対応するCの要素を計算する。以下の図のように、Aの各行はBの列数だけグローバルメモリから読まれ、Bの各行もAの行数だけ読まれる。

/src/programming_interface/shared_memory/not_using_shared_memory.cu
// Thread block size
#define BLOCK_SIZE 16

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
struct Matrix {
  int    width;
  int    height;
  float* elements;
};

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C) {
  // Load A and B to device memory
  Matrix d_A;
  d_A.width   = A.width;
  d_A.height  = A.height;
  size_t size = A.width * A.height * sizeof(float);
  cudaMalloc(&d_A.elements, size);
  cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice);
  Matrix d_B;
  d_B.width  = B.width;
  d_B.height = B.height;
  size       = B.width * B.height * sizeof(float);
  cudaMalloc(&d_B.elements, size);
  cudaMemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice);

  // Allocate C in device memory
  Matrix d_C;
  d_C.width  = C.width;
  d_C.height = C.height;
  size       = C.width * C.height * sizeof(float);
  cudaMalloc(&d_C.elements, size);

  // Invoke kernel
  dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
  dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
  MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

  // Read C from device memory
  cudaMemcpy(C.elements, d_C.elements, size, cudaMemcpyDeviceToHost);

  // Free device memory
  cudaFree(d_A.elements);
  cudaFree(d_B.elements);
  cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
// Calculate C = A * B
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) {
  // Each thread computes one element of C
  // by accumulating results into Cvalue
  float Cvalue = 0;
  int   row    = blockIdx.y * blockDim.y + threadIdx.y;
  int   col    = blockIdx.x * blockDim.x + threadIdx.x;
  for (int e = 0; e < A.width; ++e)
    Cvalue += A.elements[row * A.width + e] * B.elements[e * B.width + col];
  C.elements[row * C.width + col] = Cvalue;
}

共有メモリを使わない行列積

以下のコード例は共有メモリを活用した行列積の実装である。この実装では、各スレッドブロックはCのある正方部分行列Csubを計算し、そのブロックの各スレッドはCsubの各要素を計算する。以下の図のように、Csubは次元が(ブロックサイズ, Aの列数)のAの部分行列と次元が(Bの行数, ブロックサイズ)のBの部分行列の積で計算できるので、この2つの部分行列をグローバルメモリから共有メモリにロードすればAの各行は(Bの列数) / (ブロックサイズ)だけ、Bの各行は(Aの行数) / (ブロックサイズ)だけ読めばよい。

/src/programming_interface/shared_memory/using_shared_memory.cu
// Thread block size
#define BLOCK_SIZE 16

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
struct Matrix {
  int    width;
  int    height;
  int    stride;
  float* elements;
};

// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col) {
  return A.elements[row * A.stride + col];
}

// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col, float value) {
  A.elements[row * A.stride + col] = value;
}

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col) {
  Matrix Asub;
  Asub.width    = BLOCK_SIZE;
  Asub.height   = BLOCK_SIZE;
  Asub.stride   = A.stride;
  Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col];
  return Asub;
}

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C) {
  // Load A and B to device memory
  Matrix d_A;
  d_A.width = d_A.stride = A.width;
  d_A.height             = A.height;
  size_t size            = A.width * A.height * sizeof(float);
  cudaMalloc(&d_A.elements, size);
  cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice);

  Matrix d_B;
  d_B.width = d_B.stride = B.width;
  d_B.height             = B.height;
  size                   = B.width * B.height * sizeof(float);
  cudaMalloc(&d_B.elements, size);
  cudaMemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice);

  // Allocate C in device memory
  Matrix d_C;
  d_C.width = d_C.stride = C.width;
  d_C.height             = C.height;
  size                   = C.width * C.height * sizeof(float);
  cudaMalloc(&d_C.elements, size);

  // Invoke kernel
  dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
  dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
  MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

  // Read C from device memory
  cudaMemcpy(C.elements, d_C.elements, size, cudaMemcpyDeviceToHost);

  // Free device memory
  cudaFree(d_A.elements);
  cudaFree(d_B.elements);
  cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) {
  // Block row and column
  int blockRow = blockIdx.y;
  int blockCol = blockIdx.x;

  // Each thread block computes one sub-matrix Csub of C
  Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

  // Each thread computes one element of Csub
  // by accumulating results into Cvalue
  float Cvalue = 0;

  // Thread row and column within Csub
  int row = threadIdx.y;
  int col = threadIdx.x;

  // Loop over all the sub-matrices of A and B that are
  // required to compute Csub
  // Multiply each pair of sub-matrices together
  // and accumulate the results
  for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
    // Get sub-matrix Asub of A
    Matrix Asub = GetSubMatrix(A, blockRow, m);

    // Get sub-matrix Bsub of B
    Matrix Bsub = GetSubMatrix(B, m, blockCol);

    // Shared memory used to store Asub and Bsub respectively
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    // Load Asub and Bsub from device memory to shared memory
    // Each thread loads one element of each sub-matrix
    As[row][col] = GetElement(Asub, row, col);
    Bs[row][col] = GetElement(Bsub, row, col);

    // Synchronize to make sure the sub-matrices are loaded
    // before starting the computation
    __syncthreads();

    // Multiply Asub and Bsub together
    for (int e = 0; e < BLOCK_SIZE; ++e) {
      Cvalue += As[row][e] * Bs[e][col];
    }

    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    __syncthreads();
  }
  // Write Csub to device memory
  // Each thread writes one element
  SetElement(Csub, row, col, Cvalue);
}

共有メモリを使った行列積